Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3-nanosecond pulse laser.
نویسندگان
چکیده
PURPOSE Retinal laser photocoagulation represents a major treatment strategy for the management of diabetic macular edema (DME). However, the thermal nature of this procedure defines that collateral tissue injury result, meaning that it cannot be used near the fovea centralis. We studied inflammatory and glial responses resulting from treatment of rats with a conventional laser and with a novel short-duration, nonthermal laser (retinal regeneration therapy [2RT]) at clinically relevant energy levels. METHODS Pigmented Dark Agouti rats were treated with either a conventional thermal continuous wave (CW; 532-nm, 100-ms pulse duration) or a short-pulse (2RT; 532-nm, Q-switched, 3-ns pulse) laser. Settings were at visible threshold for the CW laser (12.7 J/cm(2)/pulse) and at supra- and subvisible thresholds for the 2RT laser ("high," 2RT-H, 163 mJ/cm(2)/pulse; "low," 2RT-L, 109 mJ/cm(2)/pulse). Rats were killed at various subsequent time points. Samples were processed for histology, immunohistochemistry, RT-PCR, and Western blotting. RESULTS The CW laser caused outer retinal lesions that were associated with photoreceptor death, astrocyte and Müller cell activation, and infiltration of macrophages and neutrophils. Furthermore, inflammatory cytokines, heat shock proteins, endogenous trophic factors, and matrix metalloproteinases were induced. In comparison, all of these changes were drastically attenuated when the 2RT laser was used, particularly at the subthreshold setting. CONCLUSIONS The conventional laser produced marked retinal damage and cellular responses consistent with an inflammatory response to thermal injury. In contrast, the 2RT laser produced negligible retinal damage and cellular responses at clinically relevant settings. These results may have important implications for the treatment of retinal disease.
منابع مشابه
Effects of Laser Physical Parameters on Lesion Size in Retinal Photocoagulation Surgery: Clinical OCT and Experimental Study
Introduction: The aim of the present study was to determine burn intensity in retinal laser photocoagulation based on laser parameters; wavelength, power, beam size and pulse duration, using Optical Coherence Tomography (OCT), fundus camera, physical eye model and computer simulation in a clinical study.Materials and Methods: Participants were 10 adult patients between 50-80 years with prolifer...
متن کاملA Comparative Study Between 595-Nm Pulsed Dye Laser with Cutaneous Compression and Cryotherapy in the Treatment of Solar Lentigines
Background: Although cryotherapy is still the first-line therapy for solar lentigines, due to side effects such as post-inflammatory hyperpigmentation (PIH), especially in patients with darker skin types, pigment specific lasers should be considered as initial treatment. The aim of this study was to evaluate the efficacy and safety of cryotherapy in comparison with 595-nm pulsed dye laser (PDL)...
متن کاملTreatment of lentigines by a novel high power diode laser at 755 nm: a case report
The use of high-power diode laser with a wavelength of 755 nm is an effective and safe method for the correction and partial and/or total elimination of pigmented lesions, specifically solar lentigines. This wavelength has yet not been used in diode lasers to treat solar lentigines. Side effects are the usual ones, including darkening and scab formation. Our patient was a 40-year-old woman of C...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملNonlinear Optical Absorption of Carbon Nanostructures Synthesized by Laser Ablation of Highly Oriented Pyrolytic Graphite in Organic Solvents
In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2013